Search results for "Arc routing problem"
showing 8 items of 8 documents
A branch-and-cut algorithm for the Orienteering Arc Routing Problem
2016
[EN] In arc routing problems, customers are located on arcs, and routes of minimum cost have to be identified. In the Orienteering Arc Routing Problem (OARP),in addition to a set of regular customers that have to be serviced, a set of potential customers is available. From this latter set, customers have to be chosen on the basis of an associated profit. The objective is to find a route servicing the customers which maximize the total profit collected while satisfying a given time limit on the route.In this paper, we describe large families of facet-inducing inequalities for the OARP and present a branch-and-cut algorithm for its solution. The exact algorithm embeds a procedure which builds…
Aesthetic considerations for the min-max K-Windy Rural Postman Problem
2017
[EN] The aesthetic quality of routes is a feature of route planning that is of practical importance, but receives relatively little attention in the literature. Several practitioners have pointed out that the visual appeal of a proposed set of routes can have a strong influence on the willingness of a client to accept or reject a specific routing plan. While some work has analyzed algorithmic performance relative to traditional min-sum or min-max objective functions and aesthetic objective functions, we are not aware of any work that has considered a multi-objective approach. This work considers a multi-objective variant of the Min-Max K-Vehicles Windy Rural Postman Problem, discusses sever…
A New Branch-and-Cut Algorithm for the Generalized Directed Rural Postman Problem
2016
The generalized directed rural postman problem, also known as the close-enough arc routing problem, is an arc routing problem with some interesting real-life applications, such as routing for meter reading. In this article we introduce two new formulations for this problem as well as various families of new valid inequalities that are used to design and implement a branch-and-cut algorithm. The computational results obtained on test bed instances from the literature show that this algorithm outperforms the existing exact methods
Lower and upper bounds for the mixed capacitated arc routing problem
2006
This paper presents a linear formulation, valid inequalities, and a lower bounding procedure for the mixed capacitated arc routing problem (MCARP). Moreover, three constructive heuristics and a memetic algorithm are described. Lower and upper bounds have been compared on two sets of randomly generated instances. Computational results show that the average gaps between lower and upper bounds are 0.51% and 0.33%, respectively.
Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem
2017
[EN] The generalized directed rural postman problem is an arc routing problem with many interesting real-life applications, such as routing for meter reading. In this application, a vehicle with a receiver travels through a series of neighborhoods. If the vehicle gets closer than a certain distance to a meter, the receiver is able to record the gas, water, or electricity consumption. Therefore, the vehicle does not need to traverse every street, but only a few, to get close enough to each meter. We study an extension of this problem in which a fleet of vehicles is available. Given the characteristics of the mentioned application, the vehicles have no capacities but there is a maximum distan…
A matheuristic for the Team Orienteering Arc Routing Problem
2015
In the Team OrienteeringArc Routing Problem (TOARP) the potential customers are located on the arcs of a directed graph and are to be chosen on the basis of an associated profit. A limited fleet of vehicles is available to serve the chosen customers. Each vehicle has to satisfy a maximum route duration constraint. The goal is to maximize the profit of the served customers. We propose a matheuristic for the TOARP and test it on a set of benchmark instances for which the optimal solution or an upper bound is known. The matheuristic finds the optimal solutions on all, except one, instances of one of the four classes of tested instances (with up to 27 vertices and 296 arcs). The average error o…
Contributions to Close-Enough Arc Routing Problems
2021
A pesar de carecer de datos específicos, se estima que el sector del transporte representa aproximadamente el 64% del consumo mundial de combustible, el 27% del consumo total de energía y el 23% de las emisiones mundiales de dióxido de carbono (CO2) relacionadas con la energía. Además, se prevé que el impacto medioambiental del sector del transporte aumente de forma drástica en los próximos años debido al efecto de la globalización, que ha eliminado barreras haciendo posible la accesibilidad a todos los lugares, productos y servicios del mundo. Por ello, el transporte se sitúa como uno de los principales retos en materia de desarrollo, para impulsar la prosperidad y lograr así un entorno so…
The Windy clustered prize-collecting arc-routing problem
2011
This paper introduces the windy clustered prize-collecting arc-routing problem. It is an arc-routing problem where each demand edge is associated with a profit that is collected once if the edge is serviced, independent of the number of times the edge is traversed. It is further required that if a demand edge is serviced, then all the demand edges of its component are also serviced. A mathematical programming formulation is given and some polyhedral results including several facet-defining and valid inequalities are presented. The separation problem for the different families of inequalities is studied. Numerical results from computational experiments are analyzed. © 2011 INFORMS.